Shadow-Based Hierarchical Matching for the Automatic Registration of Airborne LiDAR Data and Space Imagery
نویسندگان
چکیده
The automatic registration of LiDAR data and optical images, which are heterogeneous data sources, has been a major research challenge in recent years. In this paper, a novel hierarchical method is proposed in which the least amount of interaction of a skilled operator is required. Thereby, two shadow extraction schemes, one from LiDAR and the other from high-resolution satellite images, were used, and the obtained 2D shadow maps were then considered as prospective matching entities. Taken as the base, the reconstructed LiDAR shadows were transformed to image shadows using a four-step hierarchical method starting from a coarse 2D registration model and leading to a fine 3D registration model. In the first step, a general matching was performed in the frequency domain that yielded a rough 2D similarity model that related the LiDAR and image shadow masks. This model was further improved by modeling and compensating for the local geometric distortions that existed between the two heterogeneous data sources. In the third step, shadow masks, which were organized as segmented matched patches, were the subjects of a coinciding procedure that resulted in a coarse 3D registration model. In the last hierarchical step, that model was ultimately reinforced via a precise matching between the LiDAR and image edges. The evaluation results, which were conducted on six datasets and from different relative and absolute aspects, demonstrated the efficiency of the proposed method, which had a very promising accuracy on the order of one pixel.
منابع مشابه
Hierarchical Registration Method for Airborne and Vehicle LiDAR Point Cloud
A new hierarchical method for the automatic registration of airborne and vehicle light detection and ranging (LiDAR) data is proposed, using three-dimensional (3D) road networks and 3D building contours. Firstly, 3D road networks are extracted from airborne LiDAR data and then registered with vehicle trajectory lines. During the registration of airborne road networks and vehicle trajectory line...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملEvaluation of Multiple-domain Imagery Matching Based on Different Feature Spaces
This paper is focused on analyzing the performance of various matching methods that could be applied to multipledomain imagery matching for photogrammetric and remote sensing purpose. More precisely, the matching between the LiDAR intensity imagery and optical satellite/airborne image domains is of interest, which is a challenging task due to substantial differences such as dissimilarity in sen...
متن کاملExperiences with Using Sift for Multiple Image Domain Matching
The paper reports about investigations into the utilization of the SIFT algorithm to support image matching between different image domains. The Scale-Invariant Feature Transformation, proposed by Lowe in 1999, is a highly robust technique that has been widely used in the computer vision community. Though, SIFT is known in mapping circles, so far its use is rather limited. The objective of our ...
متن کاملAutomatic Registration of Iphone Images to Laser Point Clouds of Urban Structures Using Shape Features
Fusion of 3D airborne laser (LIDAR) data and terrestrial optical imagery can be applied in 3D urban modeling and model up-dating. The most challenging aspect of the fusion procedure is registering the terrestrial optical images on the LIDAR point clouds. In this article, we propose an approach for registering these two different data from different sensor sources. As we use iPhone camera images...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016